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A novel scoring algorithm based on molecular interaction fingerprints (IFPs) was comparatively evaluated
in its scaffold hopping efficiency against four virtual screening standards (GlideXP, Gold, ROCS, and a
Bayesian classifier). Decoy databases for the two targets under examination, adenosine deaminase and retinoid
X receptor alpha, were obtained from the Directory of Useful Decoys and were further enriched with
approximately 5% of active ligands. Structure and ligand-based methods were used to generate the ligand
poses, and a Tanimoto metric was chosen for the calculation of the similarity interaction fingerprint between
the reference ligand and the screening database. Database enrichments were found to strongly depend on
the pose generator algorithm. In spite of these dependencies, enrichments using molecular IFPs were
comparable to those obtained with GlideXP, Gold, ROCS, and the Bayesian classifier. More interestingly,
the molecular IFP scoring algorithm outperformed these methods at scaffold hopping enrichment, regardless

of the pose generator algorithm.

1. Introduction

Identifying active compounds from large databases by ap-
plying structural knowledge through in silico approaches has
become an important part of current drug discovery. Much of
the drive in making use of virtual screening (VS) methods has
arisen from the increased pressure to reduce the costs involved
in experimental high-throughput screening.! The ambition of
VS methods is thus to accelerate the lead finding and lead
optimization discovery stages, ultimately resulting in more
candidates in the developmental pipeline in shorter time frames.

A number of VS approaches have been comparatively
evaluated by several groups with respect to their ability to
provide substantial ligand enrichment among top-ranking hits.®
The result is a series of elegant studies that challenged the ability
of various VS methods to assign low scores to decoys while
assigning high scores to annotated active compounds in the
database. These studies also critically characterize the common
strengths and pitfalls of VS methods with the following
conclusions. First, database enrichments bear a high dependence
on the target studied, that is, the quality of the crystal structure
(or homology model), topology of the binding pocket, cavity
size, and magnitude of induced-fit motions upon ligand binding.
Second, the physical and structural correlation between the
decoys and the ligands is critical in assessing enrichment factors
in virtual screens. This concern is illustrated in the works of
Verdonk et al.,” who concluded that if there are significant
differences in physical properties (e.g., size) between ligands
and decoys, docking enrichments can appear artificially good.
Third, the enrichment of actives from among a large database
of decoys can also vary depending on the virtual screening
algorithm, the various constraints imposed for pose generation,
and the software/hardware characteristics.

Recently, the competence of VS approaches at scaffold
hopping has also generated much attention and research in the
drug design community.®>~'® In an attempt to improve the poor
performance of the energy-based and 2D fingerprint similarity
scoring methods in scaffold hopping,'* several new descriptors
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have been recently introduced. Among these, the GRID mo-
lecular interaction field descriptor,'* the SHED descriptor,® and
the CATS descriptor'® have been fruitfully used in different
virtual screening strategies.

In this study, we present a comparative evaluation of a novel
scoring method based on a molecular TFP algorithm® against
the popular VS programs GlideXP,'® Gold,"” ROCS,'® and a
Bayesian classifier as to their scaffold hopping efficiency. Our
results show that (i) the molecular IFP scoring algorithm is
equally suited to quantifying virtual screening success as the
popular internal scoring functions of GlideXP, Gold, or ROCS,
and (ii) the IFP algorithm is overall a more efficient scoring
method at scaffold hopping regardless of the pose generator
algorithm.

2. Methodology

a. Protein Target Selection and Preparation. In this study,
two proteins were used as test cases. The first one was adenosine
deaminase (ADA), an enzyme involved in purine metabolism which
irreversibly deaminates adenosine. Many crystal structures of ADA
in complex with assorted inhibitors exemplify its rather polar active
site (Figure 1). The second protein target was retinoid X receptor
alpha (RXRa), a nuclear receptor that activates transcription upon
binding of 9-cis-retinoic acid or other RXR agonists. Abundant
crystal structures of RXRa in complex with different ligands reveal
this nuclear receptor binding site as considerably hydrophobic
(Figure 1). The choice of very disparate targets for the underlying
analysis was intended to identify possible biases that may exist in
the virtual screening algorithms with regard to the nature of the
ligand database and/or protein—ligand interactions.

The crystal structures of ADA and RXRo were obtained from
the ZINC database'® and the RCSB Protein Data Bank,?° respec-
tively, in PDB format. Water molecules and ions were removed
from the original source. Hydrogen atoms were added, and the
positions of hydrogen atoms involved in polar interactions were
subsequently minimized to optimize their hydrogen bond interac-
tions using the Protein Preparation module in Maestro.'® Protein
residues were inspected, and the tautomeric states of histidines,
hydroxyl group orientations, and protonation states of titratable
residues were adjusted accordingly. The resulting receptor models
were saved to MAE and MOL2 file formats, compatible with
GlideXP and Gold, respectively.
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Figure 1. Binding sites of adenosine deaminase (left) and retinoid X receptor alpha (right). The reference ligands are colored in blue and protein
residues that are actively involved in ligand binding are annotated accordingly.

HN
N
A N7
OIS
NZ N N N
No~-© ° Hoﬁo
o /,| Ho ‘u/,l
OH OH
Class 1 Class 2

[%Qve\w " C é[ éD

Class §

Class 6

Class 3 Class 4

“| )\[\>

w
N/YkNHz on 0

Class 9 \:

Class 10 Class 11 . Class 12

Figure 2. Representative molecules from the 12 structural classes in the active ligand set of ADA.

b. Database Selection and Preparation. In the interest of
improving and validating existing and upcoming VS algorithms, it
is desirable that the modeling community uses benchmarked data
sets in their investigations so that biases are minimized, thus
facilitating the assessment and comparison of the VS studies. A
recent publication describes an unprecedented benchmarking of sets
for molecular docking.?' The result of this generous effort is a
publicly available database of physically matched decoys and
ligands, the Directory of Useful Decoys (DUD), which provides a
more stringent decoy criterion with which to evaluate virtual
screening performance. DUD is currently drawn from the ZINC
database,'” a database of commercially available compounds for
virtual screening.

Relevant decoy libraries for the two targets under investigation
in this study were used and further enriched with active ligands
obtained from both the ZINC and Integrity Prous databases.>” The
databases were prepared in the following manner. Molecules were
converted from 2D SDF to 3D MOL2 format using SYBYL,?® and
OMEGA?* was subsequently used to obtain the lowest-energy
conformer for each database molecule. The screening database of

ADA consisted of 821 decoys and 48 active ligands, and that of
RXRa consisted of 706 decoys and 38 active ligands. We used
Classpharmer® to cluster the active ligands into distinct structural
classes. In addition, some classes were further broken down in
subclasses in order to maintain an even average of compounds in
each class. Classpharmer was used to generate the subclasses, and
the criterion that compounds belonging to each subclass have
dissimilar molecular IFPs was imposed. The result was a balanced
clustering of ADA and RXRa active ligands among 12 and 10
classes, respectively (Figures 2 and 3).

¢. Molecular Interaction Fingerprint. Recently, studies by
Rognan® and Deng®® introduced two novel topological scoring
methods based on molecular interaction fingerprints (IFPs) as a
better descriptor to quantify docking success. IFPs are simple bit
strings that convert 3D information on protein—ligand interactions
into 1D bit vector representations that can be quickly compared to
a reference pose by the use of traditional metrics, e.g., Tanimoto
similarity coefficient.?”

Specifically, the molecular IFP algorithm was used as a simple
but efficient postdocking processing method for prioritizing the most
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Figure 3. Representative molecules from the 10 structural classes in the active ligand set of RXRo..

Table 1. Seven-Bit Molecular Interaction Fingerprint Used for Every
Residue in the Protein

bit vector position protein atom type ligand atom type interaction
1 hydrophobe hydrophobe hydrophobic
2 aromatic aromatic face-to-face
3 aromatic aromatic edge-to-face
4 donor acceptor H-bond
5 acceptor donor H-bond
6 cation anion ionic
7 anion cation ionic

relevant poses of both fragments and druglike compounds.® A
comparable structural molecular interaction fingerprint (SIFt) was
reported that incorporates the binding interactions of various
fragments in a combinatorial library and translates desirable
ligand—target binding interactions into library filtering constraints.?®
The authors demonstrated that their new algorithm, coupled with
classification models, is a valuable structure-based tool for the
design of novel combinatorial chemical libraries.

Our current work evaluates Rognan’s IFP algorithm in its ability
to enrich libraries with novel bioactive scaffolds. The underlying
assumption in the use of topological IFPs as a scoring method is
that pose generators like GlideXP and Gold are capable of sampling
the binding site cavity for generating reliable poses; however, they
are simply not accurate enough at correctly scoring them. Our
approach makes use of these correct poses and applies the molecular
IFP as an enhanced scoring algorithm by comparing the fingerprint
of the binding pose of a cocrystallized reference ligand to the IFPs
of the screening database ligands.

For the computation of the protein—ligand interactions and
subsequent scoring with the Tanimoto metric, a 7-bit fingerprint
was used (Table 1).

For the purpose of the similarity analysis, two reference ligands
were taken for each target. These ligands represent the binding
modes of crystallized ADA and RXRa ligands, and their IFPs are
shown in Table 2. Each binding site residue is associated with a
7-bit fingerprint, and the bit is turned on if the interaction between

the residue and the ligand is present. It becomes evident from the
comparison of both molecular interaction fingerprints that the
binding site of ADA has a more polar character than that of RXRa,
which in fact mirrors the nature of their ligands.

Given the fact that the molecular interaction fingerprint vector
shown in Table 2 does not consider repulsive van der Waals and
electrostatic interactions between a given ligand and the protein, a
postprocessing analysis was required prior to the database enrich-
ment computation with the IFP scoring method. Hence those ligand
poses which presented abnormal electrostatic (elec) or van der
Waals (vdW) energies (i.e., Eeec and Eyqgw > 0) were discarded
before the IFP similarity comparison and subsequent database
ranking.

Finally, because different software packages were used, each with
a proprietary file format with occasional discrepancies in atom type
assignments, standardization of the database ligand poses was
performed with UNITY?? prior to the generation of the molecular
interaction fingerprint.

d. Structure-Based Algorithms. The GlideXP (Maestro version
8.0) and Gold (version 3.0) docking algorithms were used in this
study. With regard to the virtual screening settings of GlideXP,
the crystallized ligand was chosen as the center of mass for
generation of the grid for the docking calculation. Rigid protein
docking was carried out using the “extra precision” (XP) mode
which combines a powerful conformational sampling protocol with
a custom scoring function that is specifically designed to eliminate
false positives. The remaining options were kept as default and no
constraints were used. The GlideXP Score was used to select the
50 best poses for each ligand in the database.

With regards to Gold, the binding pocket of each target was
defined from the crystallographic coordinates of the ligand, taking
into account any residue within 15 A of any atom of the ligand.
Docking runs were performed under the standard default settings
mode keeping the protein rigid. No imposed geometrical constraints
were used, and the GoldScore function was used to obtain a
maximum of 50 conformations of each ligand. Subsequently, the
50 best poses for each ligand were rescored with the ChemScore
energy function.
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Table 2. Molecular Interaction Fingerprint of the Reference Ligands of ADA (top) and RXRo (bottom)*
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“ Only the most important binding residues are shown.
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e. Ligand-Based Algorithm. Because of its speed and good
performance in previously reported VS studies,”® ROCS was chosen
as the ligand-based VS method. ROCS ranks molecules on the basis
of their similarity to a known active molecule (i.e., reference ligand)
in 3D shape space, using atom-centered Gaussian functions to allow
rapid maximization of molecular overlap (volume and atomic
features), so-called ComboScore. Prior to the overlap calculation,
OMEGA (version 2.2.1) was used to create the 500 lowest-energy
conformations of each ligand in the database, and subsequently,
ROCS (version 2.2) was used to obtain the 50 best overlap poses
of each ligand in the database with respect to two reference ligands
(see Section 2c for more details on the reference ligands).

In addition, the scoring efficiency of ROCS was compared to
that of the IFP method using ROCS as the pose generator. For this
purpose, the 50 best overlap poses of each ligand in the database
to the crystal-like reference ligand poses were collected and
embedded in the protein, preserving the same orientation within
the binding cavity.

f. Naive Bayesian Classifiers. Learned Bayesian models were
generated for each target with Pipeline Pilot*® using two reference
ligands (“‘actives”), and a random subset of 20 decoys (“inactives”).
Two-dimensional structural information was used as input data, and
the extended connectivity fingerprint (ECFP-12), AlogP, molecular
weight, number of hydrogen bond acceptors, number of hydrogen
bonds donors, number of rotational bonds, and molecular polar
surface area descriptors were used for model building. The Bayesian
model was then used to rank the remaining compounds in the
screening database derived from the normalized probability.

Additionally, a second pair of Bayesian classifiers was learned
using the molecular interaction fingerprints using several nonre-
dundant IFPs of the two reference ligands (“actives”), and similarly
for a small, random subset of 20 decoys (“inactives”). Subsequently,
50 IFPs were then generated for each ligand in the database using
Gold, and those poses which presented unacceptable van der Waals
or electrostatic interaction energies were discarded. Thereafter, the
model was used to rank the database ligands according to the
normalized probability.

3. Results and Discussion

a. Overall Database Enrichments. In this study, we inves-
tigated the ability of different VS methods at enriching
benchmarked decoy libraries spiked with approximately 5% of
true ligands. Moreover, we assessed the internal scoring
functions of GlideXP, Gold, ROCS, and a nai've Bayesian
classifier at scaffold hopping efficiency and compared them with
the novel topological IFP scoring method based on protein—ligand
interaction fingerprints.

At this point, we would like to make the distinction between
pose generator and scoring algorithm efficiencies. One must
ensure that the pose generator and scoring algorithm are capable
of characterizing the true ligands, reproducing crystal-like poses
and ranking them well. Both play an important role in
discriminating ligands from decoys in a screening database, and
any VS study must ensure the prior assessment of docking
algorithms and scoring functions using benchmarked screening
ligand-decoy libraries.

Accordingly, we tested GlideXP and Gold in their ability to
reproduce accurate poses of two reference ligands for which
crystallographic data were available. Our analysis reveals that
the rmsd of docked pose versus crystallographic pose is lower
than 1.5 A for ADA and RXRa, which falls within the
acceptable limits of accuracy and reproducibility. These results
therefore demonstrate that for the two proteins used in this
evaluation, ADA and RXRo, docking into a single protein
structure by multiple compound classes was able to reproduce
the observed binding mode even when the protein is held rigid.
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Figure 4. Database enrichments of ADA (left) and RXRa (right). The coloring scheme is as follows: light blue (GoldScore), pink (GlideXP),

violet (ChemScore), green (ROCS), and grey (Bayesian).
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Figure 5. Database enrichments of ADA (left) and RXRa (right) calculated with the IFP scoring method. The coloring scheme is as follows: light
blue (GoldScore for ADA and ChemScore for RXRa), pink (Bayesian), and violet (ROCS).

Table 3. Scaffold Hopping Enrichment at 5% (left) and 10% (right) of the Database Screened for ADA

Method/Class
GoldScore
ChemScore
Gold IFP

ROCS IFP

Bayes IFP

Method/Class

GoldScore

ChemScore
Gold IFP

ROCS IFP

Bayes IFP

“ Color-coding is as follows. Red: not a single active ligand has been retrieved for that particular class; green: at least one ligand has been retrieved for

that particular class.

Database enrichments for ADA and RXRa were then
calculated with Pipeline Pilot, and the results are summarized
in Figure 4 with Receiver Operating Characteristic (ROC) plots.
The areas under the ROC curves are a robust method for
measuring performance. These plots represent the proportion
of all actives recovered versus the proportion of all inactives
recovered as one proceeds from the top to the bottom of the
ranked list. An immediate observation drafted from Figure 4 is
that the database enrichments of ADA and RXRa are strongly
dependent on the algorithm used. We observed that the various
rescoring options in Gold perform differently, with ChemScore

and GoldScore performing better for hydrophobic and polar
ligands, respectively. With regards to GlideXP, the number of
database ligands that did not find any pose within the binding
pockets of ADA and RXRo. was substantially high, this
phenomenon being more severe for RXRa. These observations
are not unusual as the GlideXP scoring method encompasses a
less flexible criterion in its energy function in order to
discriminate ligands from decoys. For the docking runs, protein
flexibility was not taken into account, and this can be a problem
in virtual screening. Typically, the target is represented by a
single conformation because allowing conformational changes
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Table 4. Scaffold Hopping Enrichment at 5% (left) and 10% (right) of the Database Screened for RXRa*

Method/Class
GoldScore
ChemScore
Gold IFP

ROCS IFP

Bayes IFP

Method/Class
GoldScore
ChemScore
Gold IFP

ROCS IFP

Bayes IFP

“ Color-coding is as follows. Red: not a single active ligand has been retrieved for that particular class; green: at least one ligand has been retrieved for

that particular class.

Table 5. Schematic Representation and Physical Chemical Descriptors of the Seven Active Compounds Representing Five New Lead Classes”

Name Schematic diagram AlogP NBA NBD MPSA
X
Class1 | R y) =~ 6 5 1 94
OH
X
R
/
Class 2 6 2 1 42
OH
/
0
Class 3 Proprietary scaffold 6 2 1 42
Q X R
Class 4 \>——:1—</\W/ 6 5 1 124
HO X
X,
R
Y
Class 5 6 4 1 85
OH
/
0]

@ AlogP, NBA (number of hydrogen bond acceptors), NBD (number of hydrogen bond donors), and MPSA (molecular polar surface area, A%). X = C,
N, O, S. The Tanimoto similarity matrix for each class with respect to the reference ligands can be found in the Supporting Information (Table 3).

during the docking run scales exponentially in the degrees of
freedom and CPU time, which poses a problem in VS campaigns
due to the large screened databases. A simple way to account
for protein flexibility may be to soften the criterion for the steric
fit between ligand and receptor by attenuating the repulsive term
in the Lennard-Jones potential, thus allowing for a closer
approach between ligand and protein.*® In the present study,
we did not soften the potential for the sole reason that a “softer”
potential, although better at identifying known true ligands, can
lead to many false positives.

Database enrichments of ADA were superior to those of
RXRo. with ROCS. One plausible reason is that the ligands of
RXRo are more hydrophobic than those of ADA, making the
feature overlap component of the scoring function undistin-
guishable for ligands and decoys, increasing the false positive
rate. The nai"ve Bayesian models showed comparable or higher
library enrichments than Gold, GlideXP, and ROCS.

It is likely that some of the virtual screening enrichments
obtained in this study are lower than those reported in the
literature using related targets and VS methods, raising the
question of to what extent virtual screening results depend on
the database and VS settings. This further illustrates the need
of the modeling community adopting the use of benchmarked
data sets in order to minimize biases, better facilitating the
evaluation and comparison of the VS algorithms.

The ability of the internal scoring functions of Gold and
ROCS were thereafter compared with the IFP topological
scoring method at database ranking efficiency. Additionally, the
Bayesian model trained with IFPs was used to classify the
database ligands. The database ranking and scaffold hopping
efficiency evaluation of GlideXP with the IFP method was
discontinued due to the poor database enrichments obtained with
this algorithm for both ADA and RXRa.
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Figure 5 shows the database enrichments obtained with the
IFP scoring algorithm using Gold and ROCS as pose generators,
as well as the Bayesian classifier trained with IFPs. From the
comparison of Figures 4 and 5, we can detect that the molecular
IFP descriptor is equally suited to quantifying virtual screening
success as the well-accepted scoring algorithms of Gold, ROCS,
and the naive Bayesian classifier in the top 5% and 10% of the
database screened for RXRow and ADA, respectively.

From the database enrichment results of this study, we
propose a Tanimoto coefficient threshold of 0.8 for discriminat-
ing true ligands from decoys. A previous study suggested a
threshold of 0.6,° however, only future applications of this new
metric on additional benchmarks will help refine this threshold.

It should be emphasized that our database enrichment
approach with IFP scoring was slightly different from previously
published constrained VS investigations. In the present case,
pose generation was totally unconstrained, and poses were
simply postprocessed to select the ones in agreement with the
reference molecular interaction fingerprint. Our protocol was
also different in spirit from template matching, which attempts
to optimally fit one compound to a reference set of coordinates
without any guarantee that protein—ligand interactions are going
to be conserved. IFPs offer the advantage of reconciling
structure-based design with ligand-based data mining. Molecular
IFPs are thus a fuzzy but very promising method of selecting
virtual poses/hits that satisfy user-defined prerequisites (e.g., the
crystallized pose of a ligand in a complex). Furthermore, the
IFP method is well-suited for in silico fragment screening, thus
providing a promising link between structure-based screening
and fragment-based drug discovery.

b. Overall Scaffold Hopping Enrichment. Next, the com-
petence of Gold, ROCS, and a nai"ve Bayesian classifier in
scaffold hopping enrichment was thereafter challenged and
compared to those computed with the novel scoring method
based on molecular interaction fingerprints.

Scaffold hopping success was used as a measure for the ability
of recovering actives from as many structural classes as possible.
The scaffold enrichment results for ADA and RXRo are
summarized in Tables 3 and 4. The color coding characterizes
those classes which are populated with at least one true active
(green) or no actives (red). The scaffold hopping examination
was done both at 5% and 10% of the database screened.
Additionally, the scaffold enrichment results for ADA and
RXRa in percentage of actives retrieved of each structural class
at 5% and 10% of the database screened can be found in the
Supporting Information (Tables 1 and 2).

Subsequently, we performed an analogous scaffold hopping
analysis using the IFP topological scoring method using Gold
and ROCS as pose generators and a Bayesian classifier learned
with IFPs. The classes which encompass the reference ligands
are class 1 and 4 for ADA, and class 1 and 10 for RXRo..

From Tables 3 and 4, it can be appreciated that the scaffold
efficiencies calculated with the IFP method for ADA and RXRa
are appreciably different. A plausible explanation lies again in
the differing natures of the ligands of each target. While the
ligands of ADA are rather polar, giving rise to rich molecular
IFPs, the IFPs of the RXRa ligands are highly aspecific. In
this respect, the default IFP rules are partly accountable for the
lack of specificity as they do not consider a long conjugated
system as aromatic. In essence, a nonspecific molecular IFP
leads to a higher number of false positives, thus decreasing the
database enrichments and scaffold hopping efficiency.

Regarding the performance of the novel IFP scoring method
for a specific target, Tables 3 and 4 show that the scaffold

Venhorst et al.

hopping efficiency using the molecular interaction fingerprint
in combination with Gold, ROCS, or a na1ve Bayesian classifier
was higher than the internal scoring algorithms of the VS
methods themselves both at 5% and 10% of the screened
database. In view of the remarkable performance of the
molecular interaction fingerprint as a topological scoring method,
a VS campaign of our database was carried out for RXRa in
the search of novel lead scaffolds in the next section.

c. Virtual Screening of RXRo. In this section, the VS
campaign for RXRa using the molecular interaction fingerprint
as a topological scoring method in the search of novel scaffolds
is described. Our in-house compound stock was the screening
database, and Gold was used as the pose generator. We made
a selection of our compound stock of those compounds, which
have proven to be active in related nuclear receptors using
Pipeline Pilot. Thus, a proprietary collection of 935 compounds
was selected for virtual screening with Gold with the options
described in the Methodology Section.

All compounds with an IFP Tanimoto coefficient greater or
equal to 0.8, with acceptable van der Waals and electrostatic
interactions, were filtered (31 compounds). Thereafter, only
those compounds with a polar bit turned on with ARG316"'
were selected (nine compounds). Experimental RXRa induced
transactivation dose response curves for these nine compounds
were determined. The induction of transactivation was measured
at the concentration range, 1 nM to 10 uM. Out of the selection
of nine compounds, we found that 7 out of 9 were active
experimentally, with only two false positives retrieved. The true
hits displayed ECsps values between 46 and 477 nM (inactive
compounds are defined as those compounds not showing any
significant transactivation activity at a concentration of 1 uM).
This thus underlines the value of the molecular IFP as an
effective, alternative scoring method. More interestingly, 70%
of the true positives represent new structural classes for RXRa.,
affirming the competence of the molecular IFP at scaffold
hopping (Table 5).

4. Conclusions

The current study presents a comparative evaluation of a novel
scoring method based on molecular interaction fingerprints
against the popular virtual screening programs GlideXP, Gold,
ROCS, and a Bayesian classifier as to their scaffold hopping
efficiency.

We have demonstrated the overall validity of these virtual
screening methods for identifying new leads from a pool of
ligands with similar physicochemical properties. Moreover, we
compared the IFP topological scoring method to the scoring
functions of GlideXP, Gold, and ROCS and found that the IFP
method exhibits comparable database enrichments and superior
scaffold hopping performance. The use of molecular IFPs as
an attractive, low-dimensional representation of protein—ligand
interactions with promising rank-ordering predictions and with
applicability for the virtual identification and profiling of novel
scaffolds at the different stages of drug discovery projects is
thus recommended.
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niou and Dr. McCormack with the proof-reading of the
manuscript, and Laboratoire Fournier for providing the trans-
activation data of RXRa.

Supporting Information Available: Tables 1 and 2 show the
scaffold enrichment results for ADA and RXRa in percentage of
actives retrieved of each structural class at 5% and 10% of the
database screened. Table 3 shows the Tanimoto similarity matrix
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of the five novel classes found in the virtual screening of RXRa
and its reference ligands. This material is available free of charge
via the Internet at http://pubs.acs.org.
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